47 research outputs found

    A Novel IoT Trust Model Leveraging Fully Distributed Behavioral Fingerprinting and Secure Delegation

    Full text link
    With the number of connected smart devices expected to constantly grow in the next years, Internet of Things (IoT) solutions are experimenting a booming demand to make data collection and processing easier. The ability of IoT appliances to provide pervasive and better support to everyday tasks, in most cases transparently to humans, is also achieved through the high degree of autonomy of such devices. However, the higher the number of new capabilities and services provided in an autonomous way, the wider the attack surface that exposes users to data hacking and lost. In this scenario, many critical challenges arise also because IoT devices have heterogeneous computational capabilities (i.e., in the same network there might be simple sensors/actuators as well as more complex and smart nodes). In this paper, we try to provide a contribution in this setting, tackling the non-trivial issues of equipping smart things with a strategy to evaluate, also through their neighbors, the trustworthiness of an object in the network before interacting with it. To do so, we design a novel and fully distributed trust model exploiting devices' behavioral fingerprints, a distributed consensus mechanism and the Blockchain technology. Beyond the detailed description of our framework, we also illustrate the security model associated with it and the tests carried out to evaluate its correctness and performance

    Turning Privacy-preserving Mechanisms against Federated Learning

    Full text link
    Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, experts proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration, and we design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode

    Predicting Tweet Engagement with Graph Neural Networks

    Full text link
    Social Networks represent one of the most important online sources to share content across a world-scale audience. In this context, predicting whether a post will have any impact in terms of engagement is of crucial importance to drive the profitable exploitation of these media. In the literature, several studies address this issue by leveraging direct features of the posts, typically related to the textual content and the user publishing it. In this paper, we argue that the rise of engagement is also related to another key component, which is the semantic connection among posts published by users in social media. Hence, we propose TweetGage, a Graph Neural Network solution to predict the user engagement based on a novel graph-based model that represents the relationships among posts. To validate our proposal, we focus on the Twitter platform and perform a thorough experimental campaign providing evidence of its quality.Comment: Accepted in ACM ICMR202

    BlindSage: Label Inference Attacks against Node-level Vertical Federated Graph Neural Networks

    Full text link
    Federated learning enables collaborative training of machine learning models by keeping the raw data of the involved workers private. One of its main objectives is to improve the models' privacy, security, and scalability. Vertical Federated Learning (VFL) offers an efficient cross-silo setting where a few parties collaboratively train a model without sharing the same features. In such a scenario, classification labels are commonly considered sensitive information held exclusively by one (active) party, while other (passive) parties use only their local information. Recent works have uncovered important flaws of VFL, leading to possible label inference attacks under the assumption that the attacker has some, even limited, background knowledge on the relation between labels and data. In this work, we are the first (to the best of our knowledge) to investigate label inference attacks on VFL using a zero-background knowledge strategy. To concretely formulate our proposal, we focus on Graph Neural Networks (GNNs) as a target model for the underlying VFL. In particular, we refer to node classification tasks, which are widely studied, and GNNs have shown promising results. Our proposed attack, BlindSage, provides impressive results in the experiments, achieving nearly 100% accuracy in most cases. Even when the attacker has no information about the used architecture or the number of classes, the accuracy remained above 85% in most instances. Finally, we observe that well-known defenses cannot mitigate our attack without affecting the model's performance on the main classification task

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    Telecoaching as a new training method for elderly people: a systematic review

    Get PDF
    BackgroundThe numerous restrictive measures implemented during the recent COVID-19 pandemic have reduced the levels of physical activity (PA) carried out by elderly people and telecoaching (TC) could be a training method to maintain the recommended levels of PA. In fact, TC uses information and digital communications technologies, such as computers and mobile devices, to access training services remotely. Thus, this study aimed to systematically review the scientific literature to verify the application, efficacy, and safety of TC training programs.MethodsPubMed, Scopus, and Web of Sciences databases were used for this review, and randomized controlled trials analyzing TC training programs for elderly people were included. Only articles written in English and published in the last decade were considered.Results3 articles were included in the qualitative synthesis including 194 elderly people. The sample size ranged from 12 to 117 and the TC training program from 8 to 12 weeks. The TC training programs were applied to elderly people with metabolic diseases and respiratory diseases. TC training program was effective in elderly people with metabolic diseases while the benefits for respiratory diseases have yet to be clarified.ConclusionTC seems to be a safe, effective, and injury-free training method, despite its limited application in elderly population. Future studies should better investigate this training method in elderly people in order to evaluate the effectiveness in a wider range of diseases

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore